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Clustering Comes Up Everywhere

Cluster news articles or web pages by topic

Cluster images by who is in them
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Standard Theoretical Approach

View objects as nodes in weighted graph based on the distances
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Standard Theoretical Approach

View objects as nodes in weighted graph based on the distances

Pick some objective to optimize
◮ k-median: find centers {c1, . . . , ck} to minimize

∑
i

∑
p∈Ci

d(p, ci)
◮ Min-sum: find partition {C1, . . . ,Ck} to minimize

∑
i

∑
p,q∈Ci

d(p, q)
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Standard Theoretical Approach

Pick some objective to optimize
◮ k-median: find centers {c1, . . . , ck} to minimize

∑
i

∑
p∈Ci

d(p, ci)
◮ Min-sum: find partition {C1, . . . ,Ck} to minimize

∑
i

∑
p,q∈Ci

d(p, q)

k-median: NP-hard to approximate within a factor of (1 + 1/e);
can be approximated within a (3 + ǫ) factor

Min-sum: NP-hard to optimize;
can be approximated within a log n factor
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Standard Theoretical Approach

Pick some objective to optimize
◮ k-median: find centers {c1, . . . , ck} to minimize

∑
i

∑
p∈Ci

d(p, ci)
◮ Min-sum: find partition {C1, . . . ,Ck} to minimize

∑
i

∑
p,q∈Ci

d(p, q)

k-median: NP-hard to approximate within a factor of (1 + 1/e);
can be approximated within a (3 + ǫ) factor

Min-sum: NP-hard to optimize;
can be approximated within a log n factor

Cool new direction: exploit additional properties of the data to
circumvent lower bounds
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α-Perturbation Resilience

α-PR [Bilu and Linial, 2010, Awasthi et al., 2012]

A clustering instance (S , d) is α-perturbation resilient to a given objective
function Φ if for any function d ′ : S × S → R≥0 s.t.
∀p, q ∈ S , d(p, q) ≤ d ′(p, q) ≤ αd(p, q), there is a unique optimal
clustering OPT ′ for Φ under d ′ and this clustering is equal to the optimal
clustering OPT for Φ under d .
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Main Results

Polynomial time algorithm for finding OPT for α-PR k-median
instances when α ≥ 1 +

√
2

◮ It works for any center-based objective function, e.g. k-means

Polynomial time algorithm for a generalization (α, ǫ)-PR

Polynomial time algorithm for finding OPT for α-PR min-sum
instances when α ≥ 3 maxi |Ci |

mini |Ci |−1
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Structure Properties of α-PR k-Median Instance

Claim

α-PR for k-median implies that ∀p ∈ Ci , αd(p, ci ) < d(p, cj).

Blow up all the pairwise distances within the optimal clusters by α

The OPT does not change, so ∀p ∈ Ci , d
′(p, ci ) < d ′(p, cj)

d ′(p, ci ) = αd(p, ci ) < d ′(p, cj ) = d(p, cj )
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Structure Properties of α-PR k-Median Instance

Claim

α-PR for k-median implies that ∀p ∈ Ci , αd(p, ci ) < d(p, cj).

Blow up all the pairwise distances within the optimal clusters by α

The OPT does not change, so ∀p ∈ Ci , d
′(p, ci ) < d ′(p, cj)

d ′(p, ci ) = αd(p, ci ) < d ′(p, cj ) = d(p, cj )

Implication:

if α ≥ 1 +
√
2,∀p ∈ Ci , q 6∈ Ci ,

d(ci , p) < d(ci , q) and d(ci , p) < d(p, q)
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Structure Properties of α-PR k-Median Instance

Let dmax
i = maxp∈Ci

d(p, ci ). Construct a ball B(ci , d
max
i )

◮ the ball covers exactly Ci

◮ points inside are closer to the center than to points outside, i.e.
∀p ∈ B(ci , d

max
i ), q 6∈ B(ci , d

max
i ), d(p, ci ) < d(p, q)
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Closure Distance

Closure Distance

The closure distance dS(A,A
′) between two subsets A and A′ is the

minimum d , such that there exists a point c ∈ A ∪ A′ satisfying:

coverage condition: the ball B(c , d) covers A ∪ A′;

margin condition: points inside are closer to the center than to
points outside, i.e. ∀p ∈ B(c , d), q 6∈ B(c , d), d(c , p) < d(p, q).
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Algorithm for α-PR k-median

Closure Linkage

Begin with each point being a cluster

Repeat until one cluster remains:
merge the two clusters with
minimum closure distance

Output the tree with points as leaves
and merges as internal nodes

������

������

����

�
�

�
� �

�

Theorem

If α ≥ 1 +
√
2, the tree output contains OPT as a pruning.
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Proof

By induction, we show that the algorithm will not merge a strict subset
A ⊂ Ci with a subset A′ outside Ci .

Pick B ⊂ Ci \ A such that ci ∈ A ∪ B

dS(A,B) ≤ dmax
i = maxp∈Ci

d(p, ci)
◮ dmax

i and ci ∈ A ∪ B satisfy the two conditions of closure distance
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Proof

dS(A,A
′) > dmax

i

◮ Suppose the center c for the ball defining dS (A,A
′) is from A′

◮ Since c 6∈ Ci , d(ci , p) < d(p, c) for arbitrary p ∈ A.
By margin condition, ci ∈ B(c , dS(A,A

′)), i .e. dS (A,A
′) ≥ d(ci , c)

◮ Since c 6∈ Ci , d(ci , c) > dmax
i
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◮ A similar argument holds for the case c ∈ A
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(α, ǫ)-Perturbation Resilience

α-PR imposes a strong restriction that the OPT does not change
after perturbation

We propose a more realistic relaxation

(α, ǫ)-Perturbation Resilience

A clustering instance (S , d) is (α, ǫ)-perturbation resilient to a given
objective function Φ if for any function d ′ : S × S → R≥0 s.t.
∀p, q ∈ S , d(p, q) ≤ d ′(p, q) ≤ αd(p, q), the optimal clustering OPT ′ for
Φ under d ′ is ǫ-close to the optimal clustering OPT for Φ under d .
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Structure Property of (α, ǫ)-PR k-median instance

Theorem

Assume mini |Ci | > cǫn. Except for at most ǫn bad points, any other point
is α times closer to its own center than to other centers.
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Keypoint of the Proof

Carefully construct a perturbation that forces all the bad points move

By (α, ǫ)-PR, there could be at most ǫn bad points
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Algorithm for (α, ǫ)-PR k-median instance

A robust version of Closure Linkage algorithm can be used to show:

Theorem

Assume mini |Ci | ≥ cǫn. If α ≥ 2 +
√
7, then the tree output contains a

pruning that is ǫ-close to the optimal clustering. Moreover, the cost of this
pruning is (1 + O(ǫ/ρ))-approximation where ρ = mini |Ci |/n.
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α-PR Min-Sum Instance

Connect each point with its mini |Ci |/2 nearest neighbors

Perform average linkage on the components

Theorem

If α ≥ 3 maxi |Ci |
mini |Ci |−1 , then the tree output contains OPT as a pruning.

α-PR implies ∀A ⊆ Ci , αd(A,Ci \ A) < d(A,Cj)
◮ Consider blowing up the distances between A and Ci \ A by α
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α-PR Min-Sum Instance

Connect each point with its mini |Ci |/2 nearest neighbors

Perform average linkage on the components

Theorem

If α ≥ 3 maxi |Ci |
mini |Ci |−1 , then the tree output contains OPT as a pruning.

α-PR implies ∀A ⊆ Ci , αd(A,Ci \ A) < d(A,Cj)

The property guarantees
◮ the components are pure
◮ no strict subset of an optimal cluster will be merged with a subset

outside the cluster
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Conclusion

Polynomial time algorithm for finding (nearly) optimal solutions for
perturbation resilient instances.

Also consider a more realistic relaxation (α, ǫ)-PR

Open Questions

Design alg for (α, ǫ)-PR min-sum
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Thanks!
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Awasthi, P., Blum, A., and Sheffet, O. (2012).
Center-based clustering under perturbation stability.
Inf. Process. Lett., 112(1-2):49–54.
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Are stable instances easy?
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Proof of Property of (α, ǫ)-PR: the perturbation

For technical reasons, for each i select min(|Bi |, ǫn + 1) bad points
from Bi

Blow up all pairwise distances by α, except
◮ between the bad points and their second nearest centers
◮ between the other points and their own centers

Intuition: ideally, after the perturbation, all bad points are assigned to
their second nearest center, all the other points stay
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Proof of Property of (α, ǫ)-PR: centers after perturbation

Let c ′i be the new center for the new i -th cluster C ′
i .

Sufficient to show: c ′i 6= ci leads to a contradiction.

C ′
i differs from Ci on at most ǫn points

c ′i is close to ci

d(c ′i ,C
′
i ∩ Ci) ≈ d(ci ,C

′
i ∩ Ci )

d ′(c ′i ,C
′
i ∩ Ci ) = αd(c ′i ,C

′
i ∩ Ci) ≫ d ′(ci ,C

′
i ∩ Ci) = d(ci ,C

′
i ∩ Ci)

d ′(c ′i ,C
′
i ) > d ′(ci ,C

′
i ), a contradiction
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Structure Property of α-PR Min-Sum Instance

Claim

α-PR for min-sum implies that ∀A ⊆ Ci , αd(A,Ci \ A) < d(A,Cj).

Proof: blow up the distances between A and Ci \ A by α

Implication: by triangle inequality, if α ≥ 3 maxi |Ci |
mini |Ci |−1 ,

1. ∀Ai ⊆ Ci ,Aj ⊆ Cj s.t. min(|Ci \ Ai |, |Cj \ Aj |) > mini |Ci |/2,
davg (Ai ,Aj) > min(davg (Ai ,Ci \ Ai ), davg (Aj ,Cj \ Aj ))

2. ∀p ∈ Ci , q 6∈ Ci , 2davg (p,Ci ) < d(p, q)
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Algorithm for α-PR Min-Sum Instance

Connect each point with its mini |Ci |/2 nearest neighbors

Begin with each connected component being a cluster

Repeatedly merge the two clusters with minimum average distance

Output the tree with components as leaves and merges as internal nodes

Theorem

If α ≥ 3 maxi |Ci |
mini |Ci |−1 , then the tree output contains OPT as a pruning.

Keypoint of the Proof

Implication 2 guarantees that the components are pure

Implication 1 guarantees that no strict subset of an optimal cluster
will be merged with a subset outside the cluster
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